Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
J Clin Invest ; 134(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690726

RESUMEN

Proline substitutions within the coiled-coil rod region of the ß-myosin gene (MYH7) are the predominant mutations causing Laing distal myopathy (MPD1), an autosomal dominant disorder characterized by progressive weakness of distal/proximal muscles. We report that the MDP1 mutation R1500P, studied in what we believe to be the first mouse model for the disease, adversely affected myosin motor activity despite being in the structural rod domain that directs thick filament assembly. Contractility experiments carried out on isolated mutant muscles, myofibrils, and myofibers identified muscle fatigue and weakness phenotypes, an increased rate of actin-myosin detachment, and a conformational shift of the myosin heads toward the more reactive disordered relaxed (DRX) state, causing hypercontractility and greater ATP consumption. Similarly, molecular analysis of muscle biopsies from patients with MPD1 revealed a significant increase in sarcomeric DRX content, as observed in a subset of myosin motor domain mutations causing hypertrophic cardiomyopathy. Finally, oral administration of MYK-581, a small molecule that decreases the population of heads in the DRX configuration, significantly improved the limited running capacity of the R1500P-transgenic mice and corrected the increased DRX state of the myofibrils from patients. These studies provide evidence of the molecular pathogenesis of proline rod mutations and lay the groundwork for the therapeutic advancement of myosin modulators.


Asunto(s)
Sustitución de Aminoácidos , Miopatías Distales , Prolina , Animales , Ratones , Humanos , Prolina/genética , Prolina/metabolismo , Miopatías Distales/genética , Miopatías Distales/metabolismo , Miopatías Distales/patología , Mutación Missense , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/química , Femenino , Masculino , Ratones Transgénicos , Contracción Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología
2.
Proc Natl Acad Sci U S A ; 121(9): e2315472121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377203

RESUMEN

Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in ß-cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman-Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known whether their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human ß, embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins but minimal effects in ß myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing overall enzymatic (ATPase) cycle rate. In contrast, the only measured effect of R671C in ß myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not ß, myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are a testament to myosin's highly allosteric nature.


Asunto(s)
Miosinas , Miosinas Ventriculares , Humanos , Miosinas Ventriculares/genética , Miosinas/metabolismo , Adenosina Trifosfatasas/metabolismo , Mutación , Actinas/metabolismo , Músculo Esquelético/metabolismo
3.
bioRxiv ; 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38328143

RESUMEN

The heart is a highly plastic organ that responds to diverse stimuli to modify form and function. The molecular mechanisms of adaptive physiological cardiac hypertrophy are well-established; however, the regulation of hypertrophy regression is poorly understood. To identify molecular features of regression, we studied Burmese pythons which experience reversible cardiac hypertrophy following large, infrequent meals. Using multi-omics screens followed by targeted analyses, we found forkhead box protein O1 (FoxO1) transcription factor signaling, and downstream autophagy activity, were downregulated during hypertrophy, but re-activated with regression. To determine whether these events were mechanistically related to regression, we established an in vitro platform of cardiomyocyte hypertrophy and regression from treatment with fed python plasma. FoxO1 inhibition prevented regression in this system, while FoxO1 activation reversed fed python plasma-induced hypertrophy in an autophagy-dependent manner. We next examined whether FoxO1 was implicated in mammalian models of reversible hypertrophy from exercise and pregnancy and found that in both cases FoxO1 was activated during regression. In these models, as in pythons, activation of FoxO1 was associated with increased expression FoxO1 target genes involved in autophagy. Taken together, our findings suggest FoxO1-dependent autophagy is a conserved mechanism for regression of physiological cardiac hypertrophy across species.

4.
JACC Basic Transl Sci ; 8(9): 1043-1056, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37791310

RESUMEN

Left ventricular reverse remodeling in heart failure is associated with improved clinical outcomes. However, the molecular features that drive this process are poorly defined. Left ventricular assist devices (LVADs) are the therapy associated with the greatest reverse remodeling and lead to partial myocardial recovery in most patients. In this study, we examined whether autophagy may be implicated in post-LVAD reverse remodeling. We found expression of key autophagy factors increased post-LVAD, while autophagic substrates decreased. Autolysosome numbers increased post-LVAD, further indicating increased autophagy. These findings support the conclusion that mechanical unloading activates autophagy, which may underly the reverse remodeling observed.

5.
bioRxiv ; 2023 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-37425764

RESUMEN

Mutations at a highly conserved homologous residue in three closely related muscle myosins cause three distinct diseases involving muscle defects: R671C in ß-cardiac myosin causes hypertrophic cardiomyopathy, R672C and R672H in embryonic skeletal myosin cause Freeman Sheldon syndrome, and R674Q in perinatal skeletal myosin causes trismus-pseudocamptodactyly syndrome. It is not known if their effects at the molecular level are similar to one another or correlate with disease phenotype and severity. To this end, we investigated the effects of the homologous mutations on key factors of molecular power production using recombinantly expressed human ß, embryonic, and perinatal myosin subfragment-1. We found large effects in the developmental myosins, with the most dramatic in perinatal, but minimal effects in ß myosin, and magnitude of changes correlated partially with clinical severity. The mutations in the developmental myosins dramatically decreased the step size and load-sensitive actin-detachment rate of single molecules measured by optical tweezers, in addition to decreasing ATPase cycle rate. In contrast, the only measured effect of R671C in ß myosin was a larger step size. Our measurements of step size and bound times predicted velocities consistent with those measured in an in vitro motility assay. Finally, molecular dynamics simulations predicted that the arginine to cysteine mutation in embryonic, but not ß, myosin may reduce pre-powerstroke lever arm priming and ADP pocket opening, providing a possible structural mechanism consistent with the experimental observations. This paper presents the first direct comparisons of homologous mutations in several different myosin isoforms, whose divergent functional effects are yet another testament to myosin's highly allosteric nature.

6.
J Breath Res ; 17(3)2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37016829

RESUMEN

Rapid testing is essential to fighting pandemics such as coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Exhaled human breath contains multiple volatile molecules providing powerful potential for non-invasive diagnosis of diverse medical conditions. We investigated breath detection of SARS-CoV-2 infection using cavity-enhanced direct frequency comb spectroscopy (CE-DFCS), a state-of-the-art laser spectroscopic technique capable of a real-time massive collection of broadband molecular absorption features at ro-vibrational quantum state resolution and at parts-per-trillion volume detection sensitivity. Using a total of 170 individual breath samples (83 positive and 87 negative with SARS-CoV-2 based on reverse transcription polymerase chain reaction tests), we report excellent discrimination capability for SARS-CoV-2 infection with an area under the receiver-operating-characteristics curve of 0.849(4). Our results support the development of CE-DFCS as an alternative, rapid, non-invasive test for COVID-19 and highlight its remarkable potential for optical diagnoses of diverse biological conditions and disease states.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Pruebas Respiratorias , Análisis Espectral , Rayos Láser , Sensibilidad y Especificidad
7.
J Biol Chem ; 299(5): 104631, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36963494

RESUMEN

For decades, sarcomeric myosin heavy chain proteins were assumed to be restricted to striated muscle where they function as molecular motors that contract muscle. However, MYH7b, an evolutionarily ancient member of this myosin family, has been detected in mammalian nonmuscle tissues, and mutations in MYH7b are linked to hereditary hearing loss in compound heterozygous patients. These mutations are the first associated with hearing loss rather than a muscle pathology, and because there are no homologous mutations in other myosin isoforms, their functional effects were unknown. We generated recombinant human MYH7b harboring the D515N or R1651Q hearing loss-associated mutation and studied their effects on motor activity and structural and assembly properties, respectively. The D515N mutation had no effect on steady-state actin-activated ATPase rate or load-dependent detachment kinetics but increased actin sliding velocity because of an increased displacement during the myosin working stroke. Furthermore, we found that the D515N mutation caused an increase in the proportion of myosin heads that occupy the disordered-relaxed state, meaning more myosin heads are available to interact with actin. Although we found no impact of the R1651Q mutation on myosin rod secondary structure or solubility, we observed a striking aggregation phenotype when this mutation was introduced into nonmuscle cells. Our results suggest that each mutation independently affects MYH7b function and structure. Together, these results provide the foundation for further study of a role for MYH7b outside the sarcomere.


Asunto(s)
Pérdida Auditiva , Cadenas Pesadas de Miosina , Animales , Humanos , Ratones , Actinas/metabolismo , Línea Celular , Chlorocebus aethiops , Células COS , Pérdida Auditiva/genética , Pérdida Auditiva/fisiopatología , Cinética , Mutación , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Agregado de Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
J Clin Invest ; 133(10)2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36995778

RESUMEN

Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by absence of the protein dystrophin, which acts as a structural link between the basal lamina and contractile machinery to stabilize muscle membranes in response to mechanical stress. In DMD, mechanical stress leads to exaggerated membrane injury and fiber breakdown, with fast fibers being the most susceptible to damage. A major contributor to this injury is muscle contraction, controlled by the motor protein myosin. However, how muscle contraction and fast muscle fiber damage contribute to the pathophysiology of DMD has not been well characterized. We explored the role of fast skeletal muscle contraction in DMD with a potentially novel, selective, orally active inhibitor of fast skeletal muscle myosin, EDG-5506. Surprisingly, even modest decreases of contraction (<15%) were sufficient to protect skeletal muscles in dystrophic mdx mice from stress injury. Longer-term treatment also decreased muscle fibrosis in key disease-implicated tissues. Importantly, therapeutic levels of myosin inhibition with EDG-5506 did not detrimentally affect strength or coordination. Finally, in dystrophic dogs, EDG-5506 reversibly reduced circulating muscle injury biomarkers and increased habitual activity. This unexpected biology may represent an important alternative treatment strategy for Duchenne and related myopathies.


Asunto(s)
Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Ratones , Animales , Perros , Distrofia Muscular de Duchenne/metabolismo , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Distrofina/genética , Contracción Muscular/fisiología , Modelos Animales de Enfermedad , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo
9.
Nat Rev Cardiol ; 20(5): 347-363, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36596855

RESUMEN

Left ventricular hypertrophy is a leading risk factor for cardiovascular morbidity and mortality. Although reverse ventricular remodelling was long thought to be irreversible, evidence from the past three decades indicates that this process is possible with many existing heart disease therapies. The regression of pathological hypertrophy is associated with improved cardiac function, quality of life and long-term health outcomes. However, less than 50% of patients respond favourably to most therapies, and the reversibility of remodelling is influenced by many factors, including age, sex, BMI and disease aetiology. Cardiac hypertrophy also occurs in physiological settings, including pregnancy and exercise, although in these cases, hypertrophy is associated with normal or improved ventricular function and is completely reversible postpartum or with cessation of training. Studies over the past decade have identified the molecular features of hypertrophy regression in health and disease settings, which include modulation of protein synthesis, microRNAs, metabolism and protein degradation pathways. In this Review, we summarize the evidence for hypertrophy regression in patients with current first-line pharmacological and surgical interventions. We further discuss the molecular features of reverse remodelling identified in cell and animal models, highlighting remaining knowledge gaps and the essential questions for future investigation towards the goal of designing specific therapies to promote regression of pathological hypertrophy.


Asunto(s)
MicroARNs , Calidad de Vida , Animales , Femenino , Cardiomegalia/metabolismo , MicroARNs/uso terapéutico , Ejercicio Físico/fisiología , Factores de Riesgo , Remodelación Ventricular
10.
Elife ; 122023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36705568

RESUMEN

The design of compounds that can discriminate between closely related target proteins remains a central challenge in drug discovery. Specific therapeutics targeting the highly conserved myosin motor family are urgently needed as mutations in at least six of its members cause numerous diseases. Allosteric modulators, like the myosin-II inhibitor blebbistatin, are a promising means to achieve specificity. However, it remains unclear why blebbistatin inhibits myosin-II motors with different potencies given that it binds at a highly conserved pocket that is always closed in blebbistatin-free experimental structures. We hypothesized that the probability of pocket opening is an important determinant of the potency of compounds like blebbistatin. To test this hypothesis, we used Markov state models (MSMs) built from over 2 ms of aggregate molecular dynamics simulations with explicit solvent. We find that blebbistatin's binding pocket readily opens in simulations of blebbistatin-sensitive myosin isoforms. Comparing these conformational ensembles reveals that the probability of pocket opening correctly identifies which isoforms are most sensitive to blebbistatin inhibition and that docking against MSMs quantitatively predicts blebbistatin binding affinities (R2=0.82). In a blind prediction for an isoform (Myh7b) whose blebbistatin sensitivity was unknown, we find good agreement between predicted and measured IC50s (0.67 µM vs. 0.36 µM). Therefore, we expect this framework to be useful for the development of novel specific drugs across numerous protein targets.


Asunto(s)
Miosina Tipo II , Miosinas , Miosinas/metabolismo , Miosina Tipo II/metabolismo , Isoformas de Proteínas , Probabilidad , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/química
11.
J Muscle Res Cell Motil ; 44(2): 95-106, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36316565

RESUMEN

Non-traditional animal models present an opportunity to discover novel biology that has evolved to allow such animals to survive in extreme environments. One striking example is the Burmese python (Python molurus bivittatus), which exhibits extreme physiological adaptation in various metabolic organs after consuming a large meal following long periods of fasting. The response to such a large meal in pythons involves a dramatic surge in metabolic rate, lipid overload in plasma, and massive but reversible organ growth through the course of digestion. Multiple studies have reported the physiological responses in post-prandial pythons, while the specific molecular control of these processes is less well-studied. Investigating the mechanisms that coordinate organ growth and adaptive responses offers the opportunity to gain novel insight that may be able to treat various pathologies in humans. Here, we summarize past research on the post-prandial physiological changes in the Burmese python with a focus on the gastrointestinal tract, heart, and liver. Specifically, we address our recent molecular discoveries in the post-prandial python liver which demonstrate transient adaptations that may reveal new therapeutic targets. Lastly, we explore new biology of the aquaporin 7 gene that is potently upregulated in mammalian cardiac myocytes by circulating factors in post-prandial python plasma.


Asunto(s)
Boidae , Periodo Posprandial , Animales , Boidae/genética , Boidae/metabolismo , Boidae/fisiología , Mamíferos , Mianmar , Periodo Posprandial/fisiología
12.
J Biol Chem ; 299(1): 102657, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334627

RESUMEN

Myosin heavy chain 7b (MYH7b) is an evolutionarily ancient member of the sarcomeric myosin family, which typically supports striated muscle function. However, in mammals, alternative splicing prevents MYH7b protein production in cardiac and most skeletal muscles and limits expression to a subset of specialized muscles and certain nonmuscle environments. In contrast, MYH7b protein is abundant in python cardiac and skeletal muscles. Although the MYH7b expression pattern diverges in mammals versus reptiles, MYH7b shares high sequence identity across species. So, it remains unclear how mammalian MYH7b function may differ from that of other sarcomeric myosins and whether human and python MYH7b motor functions diverge as their expression patterns suggest. Thus, we generated recombinant human and python MYH7b protein and measured their motor properties to investigate any species-specific differences in activity. Our results reveal that despite having similar working strokes, the MYH7b isoforms have slower actin-activated ATPase cycles and actin sliding velocities than human cardiac ß-MyHC. Furthermore, python MYH7b is tuned to have slower motor activity than human MYH7b because of slower kinetics of the chemomechanical cycle. We found that the MYH7b isoforms adopt a higher proportion of myosin heads in the ultraslow, super-relaxed state compared with human cardiac ß-MyHC. These findings are supported by molecular dynamics simulations that predict MYH7b preferentially occupies myosin active site conformations similar to those observed in the structurally inactive state. Together, these results suggest that MYH7b is specialized for slow and energy-conserving motor activity and that differential tuning of MYH7b orthologs contributes to species-specific biological roles.


Asunto(s)
Miosinas Cardíacas , Músculo Esquelético , Cadenas Pesadas de Miosina , Animales , Humanos , Mamíferos/metabolismo , Músculo Esquelético/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo
13.
JACC Basic Transl Sci ; 7(10): 1063-1065, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36337923
14.
Bioeng Transl Med ; 7(3): e10394, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36176599

RESUMEN

Aortic valve stenosis (AVS) is a progressive fibrotic disease that is caused by thickening and stiffening of valve leaflets. At the cellular level, quiescent valve interstitial cells (qVICs) activate to myofibroblasts (aVICs) that persist within the valve tissue. Given the persistence of myofibroblasts in AVS, epigenetic mechanisms have been implicated. Here, we studied changes that occur in VICs during myofibroblast activation by using a hydrogel matrix to recapitulate different stiffnesses in the valve leaflet during fibrosis. We first compared the chromatin landscape of qVICs cultured on soft hydrogels and aVICs cultured on stiff hydrogels, representing the native and diseased phenotypes respectively. Using assay for transposase-accessible chromatin sequencing (ATAC-Seq), we found that open chromatin regions in aVICs were enriched for transcription factor binding motifs associated with mechanosensing pathways compared to qVICs. Next, we used RNA-Seq to show that the open chromatin regions in aVICs correlated with pro-fibrotic gene expression, as aVICs expressed higher levels of contractile fiber genes, including myofibroblast markers such as alpha smooth muscle actin (αSMA), compared to qVICs. In contrast, chromatin remodeling genes were downregulated in aVICs compared to qVICs, indicating qVICs may be protected from myofibroblast activation through epigenetic mechanisms. Small molecule inhibition of one of these remodelers, CREB Binding Protein (CREBBP), prevented qVICs from activating to aVICs. Notably, CREBBP is more abundant in valves from healthy patients compared to fibrotic valves. Our findings reveal the role of mechanical regulation in chromatin remodeling during VIC activation and quiescence and highlight one potential therapeutic target for treating AVS.

15.
Circulation ; 146(9): 699-714, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35862102

RESUMEN

BACKGROUND: Abnormalities in Ca2+ homeostasis are associated with cardiac arrhythmias and heart failure. Triadin plays an important role in Ca2+ homeostasis in cardiomyocytes. Alternative splicing of a single triadin gene produces multiple triadin isoforms. The cardiac-predominant isoform, mouse MT-1 or human Trisk32, is encoded by triadin exons 1 to 8. In humans, mutations in the triadin gene that lead to a reduction in Trisk32 levels in the heart can cause cardiac dysfunction and arrhythmias. Decreased levels of Trisk32 in the heart are also common in patients with heart failure. However, mechanisms that maintain triadin isoform composition in the heart remain elusive. METHODS: We analyzed triadin expression in heart explants from patients with heart failure and cardiac arrhythmias and in hearts from mice carrying a knockout allele for Trdn-as, a cardiomyocyte-specific long noncoding RNA encoded by the antisense strand of the triadin gene, between exons 9 and 11. Catecholamine challenge with isoproterenol was performed on Trdn-as knockout mice to assess the role of Trdn-as in cardiac arrhythmogenesis, as assessed by ECG. Ca2+ transients in adult mouse cardiomyocytes were measured with the IonOptix platform or the GCaMP system. Biochemistry assays, single-molecule fluorescence in situ hybridization, subcellular localization imaging, RNA sequencing, and molecular rescue assays were used to investigate the mechanisms by which Trdn-as regulates cardiac function and triadin levels in the heart. RESULTS: We report that Trdn-as maintains cardiac function, at least in part, by regulating alternative splicing of the triadin gene. Knockout of Trdn-as in mice downregulates cardiac triadin, impairs Ca2+ handling, and causes premature death. Trdn-as knockout mice are susceptible to cardiac arrhythmias in response to catecholamine challenge. Normalization of cardiac triadin levels in Trdn-as knockout cardiomyocytes is sufficient to restore Ca2+ handling. Last, Trdn-as colocalizes and interacts with serine/arginine splicing factors in cardiomyocyte nuclei and is essential for efficient recruitment of splicing factors to triadin precursor mRNA. CONCLUSIONS: These findings reveal regulation of alternative splicing as a novel mechanism by which a long noncoding RNA controls cardiac function. This study indicates potential therapeutics for heart disease by targeting the long noncoding RNA or pathways regulating alternative splicing.


Asunto(s)
Empalme Alternativo , Proteínas Portadoras , Insuficiencia Cardíaca , Proteínas Musculares , ARN Largo no Codificante , Animales , Arritmias Cardíacas , Proteínas Portadoras/genética , Catecolaminas , Corazón/fisiología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Hibridación Fluorescente in Situ , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Noqueados , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocitos Cardíacos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , ARN Largo no Codificante/genética
16.
Proc Natl Acad Sci U S A ; 119(28): e2204174119, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35787042

RESUMEN

Myocardial fibrosis is a key pathologic feature of hypertrophic cardiomyopathy (HCM). However, the fibrotic pathways activated by HCM-causing sarcomere protein gene mutations are poorly defined. Because lysophosphatidic acid is a mediator of fibrosis in multiple organs and diseases, we tested the role of the lysophosphatidic acid pathway in HCM. Lysphosphatidic acid receptor 1 (LPAR1), a cell surface receptor, is required for lysophosphatidic acid mediation of fibrosis. We bred HCM mice carrying a pathogenic myosin heavy-chain variant (403+/-) with Lpar1-ablated mice to create mice carrying both genetic changes (403+/- LPAR1 -/-) and assessed development of cardiac hypertrophy and fibrosis. Compared with 403+/- LPAR1WT, 403+/- LPAR1 -/- mice developed significantly less hypertrophy and fibrosis. Single-nucleus RNA sequencing of left ventricular tissue demonstrated that Lpar1 was predominantly expressed by lymphatic endothelial cells (LECs) and cardiac fibroblasts. Lpar1 ablation reduced the population of LECs, confirmed by immunofluorescence staining of the LEC markers Lyve1 and Ccl21a and, by in situ hybridization, for Reln and Ccl21a. Lpar1 ablation also altered the distribution of fibroblast cell states. FB1 and FB2 fibroblasts decreased while FB0 and FB3 fibroblasts increased. Our findings indicate that Lpar1 is expressed predominantly by LECs and fibroblasts in the heart and is required for development of hypertrophy and fibrosis in an HCM mouse model. LPAR1 antagonism, including agents in clinical trials for other fibrotic diseases, may be beneficial for HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Receptores del Ácido Lisofosfatídico/genética , Animales , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Proteínas Portadoras , Modelos Animales de Enfermedad , Células Endoteliales/patología , Fibrosis , Hipertrofia/patología , Ratones
17.
J Gen Physiol ; 154(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35323838

RESUMEN

As an opportunistic predator, the Burmese python (Python molurus bivittatus) consumes large and infrequent meals, fasting for up to a year. Upon consuming a large meal, the Burmese python exhibits extreme metabolic responses. To define the pathways that regulate these postprandial metabolic responses, we performed a comprehensive profile of plasma metabolites throughout the digestive process. Following ingestion of a meal equivalent to 25% of its body mass, plasma lipoproteins and metabolites, such as chylomicra and bile acids, reach levels observed only in mammalian models of extreme dyslipidemia. Here, we provide evidence for an adaptive response to postprandial nutrient overload by the python liver, a critical site of metabolic homeostasis. The python liver undergoes a substantial increase in mass through proliferative processes, exhibits hepatic steatosis, hyperlipidemia-induced insulin resistance indicated by PEPCK activation and pAKT deactivation, and de novo fatty acid synthesis via FASN activation. This postprandial state is completely reversible. We posit that Burmese pythons evade the permanent hepatic damage associated with these metabolic states in mammals using evolved protective measures to inactivate these pathways. These include a transient activation of hepatic nuclear receptors induced by fatty acids and bile acids, including PPAR and FXR, respectively. The stress-induced p38 MAPK pathway is also transiently activated during the early stages of digestion. Taken together, these data identify a reversible metabolic response to hyperlipidemia by the python liver, only achieved in mammals by pharmacologic intervention. The factors involved in these processes may be relevant to or leveraged for remediating human hepatic pathology.


Asunto(s)
Boidae , Adaptación Fisiológica , Animales , Boidae/metabolismo , Humanos , Hígado , Mamíferos , Nutrientes , Periodo Posprandial/fisiología
18.
Nat Rev Cardiol ; 19(6): 353-363, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35304599

RESUMEN

Variants in >12 genes encoding sarcomeric proteins can cause various cardiomyopathies. The two most common are hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Current therapeutics do not target the root causes of these diseases, but attempt to prevent disease progression and/or to manage symptoms. Accordingly, novel approaches are being developed to treat the cardiac muscle dysfunction directly. Challenges to developing therapeutics for these diseases include the diverse mechanisms of pathogenesis, some of which are still being debated and defined. Four small molecules that modulate the myosin motor protein in the cardiac sarcomere have shown great promise in the settings of HCM and DCM, regardless of the underlying genetic pathogenesis, and similar approaches are being developed to target other components of the sarcomere. In the setting of HCM, mavacamten and aficamten bind to the myosin motor and decrease the ATPase activity of myosin. In the setting of DCM, omecamtiv mecarbil and danicamtiv increase myosin activity in cardiac muscle (but omecamtiv mecarbil decreases myosin activity in vitro). In this Review, we discuss the therapeutic strategies to alter sarcomere contractile activity and summarize the data indicating that targeting one protein in the sarcomere can be effective in treating patients with genetic variants in other sarcomeric proteins, as well as in patients with non-sarcomere-based disease.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica , Cardiomiopatías/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/genética , Humanos , Mutación , Miocardio/metabolismo , Miosinas/genética , Miosinas/metabolismo , Sarcómeros/genética , Sarcómeros/metabolismo
19.
Am J Physiol Heart Circ Physiol ; 322(5): H785-H797, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35302880

RESUMEN

Pathological cardiac hypertrophy is associated with increased morbidity and mortality. Understanding the mechanisms whereby pathological cardiac growth can be reversed could be of therapeutic value. Here, we show that pathways leading to regression of pathological cardiac hypertrophy are strongly dependent on the hypertrophic trigger and are significantly modified by sex. Two pathological stimuli causing hypertrophy via distinct pathways were administered to male and female mice: angiotensin II (ANG II) or isoproterenol (Iso). Stimuli were removed after 7 days of treatment, and left ventricles (LVs) were studied at 1, 4, and 7 days. ANG II-treated females did not show regression after stimulus removal. Iso-treated males showed rapid LV hypertrophy regression. Somewhat surprisingly, RNAseq analysis at day 1 after removal of triggers revealed only 45 differentially regulated genes in common among all the groups, demonstrating distinct responses. Ingenuity pathway analysis predicted strong downregulation of the TGFß1 pathway in all groups except for ANG II-treated females. Consistently, we found significant downregulation of Smad signaling after stimulus removal including in ANG II-treated females. In addition, the ERK1/2 pathway was significantly reduced in the groups showing regression. Finally, protein degradation pathways were significantly activated only in Iso-treated males 1 day after stimulus removal. Our data indicate that TGFß1 downregulation may play a role in the regression of pathological cardiac hypertrophy via downregulation of the ERK1/2 pathway and activation of autophagy and proteasome activity in Iso-treated males. This work highlights that the reversal of pathological hypertrophy does not use universal signaling pathways and that sex potently modifies this process.NEW & NOTEWORTHY Pathological cardiac hypertrophy is a major risk factor for mortality and is thought to be largely irreversible in many individuals. Although cardiac hypertrophy itself has been studied extensively, very little is understood about its regression. It is important that we have a better understanding of mechanisms leading to regression, why this process is not reversible in some individuals and that sex differences need to be considered when contemplating therapies.


Asunto(s)
Hipertrofia Ventricular Izquierda , Caracteres Sexuales , Angiotensina II/farmacología , Animales , Femenino , Hipertrofia Ventricular Izquierda/inducido químicamente , Hipertrofia Ventricular Izquierda/metabolismo , Isoproterenol/farmacología , Masculino , Ratones , Miocitos Cardíacos/metabolismo , Factores Sexuales , Transducción de Señal
20.
Circulation ; 145(7): 513-530, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35000411

RESUMEN

BACKGROUND: Aortic valve stenosis is a sexually dimorphic disease, with women often presenting with sustained fibrosis and men with more extensive calcification. However, the intracellular molecular mechanisms that drive these clinically important sex differences remain underexplored. METHODS: Hydrogel biomaterials were designed to recapitulate key aspects of the valve tissue microenvironment and to serve as a culture platform for sex-specific valvular interstitial cells (VICs; precursors to profibrotic myofibroblasts). The hydrogel culture system was used to interrogate intracellular pathways involved in sex-dependent VIC-to-myofibroblast activation and deactivation. RNA sequencing was used to define pathways involved in driving sex-dependent activation. Interventions with small molecule inhibitors and siRNA transfections were performed to provide mechanistic insight into sex-specific cellular responses to microenvironmental cues, including matrix stiffness and exogenously delivered biochemical factors. RESULTS: In both healthy porcine and human aortic valves, female leaflets had higher baseline activation of the myofibroblast marker α-smooth muscle actin compared with male leaflets. When isolated and cultured, female porcine and human VICs had higher levels of basal α-smooth muscle actin stress fibers that further increased in response to the hydrogel matrix stiffness, both of which were higher than in male VICs. A transcriptomic analysis of male and female porcine VICs revealed Rho-associated protein kinase signaling as a potential driver of this sex-dependent myofibroblast activation. Furthermore, we found that genes that escape X-chromosome inactivation such as BMX and STS (encoding for Bmx nonreceptor tyrosine kinase and steroid sulfatase, respectively) partially regulate the elevated female myofibroblast activation through Rho-associated protein kinase signaling. This finding was confirmed by treating male and female VICs with endothelin-1 and plasminogen activator inhibitor-1, factors that are secreted by endothelial cells and known to drive myofibroblast activation through Rho-associated protein kinase signaling. CONCLUSIONS: Together, in vivo and in vitro results confirm sex dependencies in myofibroblast activation pathways and implicate genes that escape X-chromosome inactivation in regulating sex differences in myofibroblast activation and subsequent aortic valve stenosis progression. Our results underscore the importance of considering sex as a biological variable to understand the molecular mechanisms of aortic valve stenosis and to help guide sex-based precision therapies.


Asunto(s)
Válvula Aórtica/citología , Expresión Génica , Genes Ligados a X , Miofibroblastos/metabolismo , Inactivación del Cromosoma X , Actinas/genética , Actinas/metabolismo , Animales , Estenosis de la Válvula Aórtica/etiología , Estenosis de la Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/patología , Biomarcadores , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inmunohistoquímica , Masculino , Miofibroblastos/efectos de los fármacos , Factores Sexuales , Transducción de Señal , Porcinos , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...